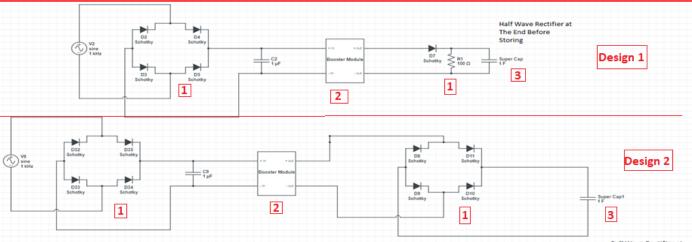
POWER SCRAPING MODULE

AN ENERGY HARVESTING DEVICE FOR REMOTE SENSOR NETWORKS

Produced By: Shahzaib Shahid, Benjamin Yoko, Andesen Ande, Xiangyu Cao, Jordan Fox, Ahmed Salem

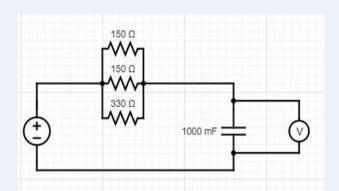
Advisor & Client: Dr. Garry Tuttle & Honeywell

PROBLEM STATEMENTS	SOLUTIONS	CONCEPTUAL SKETCH				
 Research and develop a device that will efficiently collect, convert, and store low voltage energy. Take an extremely low AC voltage as a source and convert it to a usable DC voltage that can power various components in a system. 	 Provide an alternative self-powered source for devices. Create a device that is able to take intermittent, previously unusable ambient energy and multiply it. Energy stored can be used for many wireless applications such as powering remote sensors for data collection. 	 Solar Thermal Vibrational Rectification Ultra-low Voltage Boost Charge Storage Set Set 	licro- ontroller ensor ergy imption			
REC	UIREMENTS	ENGINEERING STANDARDS AND DESIGN PRACTICES BUDGET	BUDGET			
 Functional Converting 1.1V AC Peak to Peak Voltage to 3V The input signal is the only power source for the device Include a charge indicator in the output of the device The entire device must be contained within a 6 	 Minimize loss Determine for every hour of energy a many minutes will we be able to drive Stretch goals Produce output of 5V 	 Readable circuit designs that follow design Readable circuit designs that follow design 1x EH 295 Booster Modu 	ıle			
6" space.	\succ Scalability					

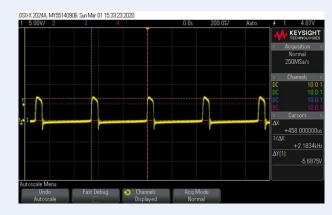

RECTIFIER TESTING

2001/	2 100	7/3	4	0.0s	500.0%/	Auto?	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	-32.0♥
								EYSIGHT CHNOLOGIES
							Acqu	uisition
								ormal MSa/s
							- Cha	innels
							DC	10.0:
¢				 			DC	
d,							DC	
1							00	10.0.
								rsors
							ΔX:	770000
							+99 1/ΔX:	9.776000u
								+1.0002kH
							ΔΥ(1):	-350.00m
Autoscale M	anu							

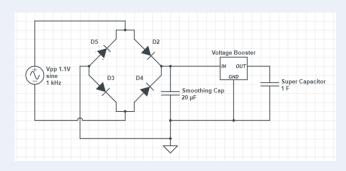
DESIGN STAGES


- 1. **Rectification** Full-wave rectifier to convert the AC input signal into a DC signal
- 2. Voltage Boosting DC-AC booster module that increases an intermittent, low-voltage input to a higher voltage
- 3. Energy Storage Stores the charge into a longterm storage component
- 4. Charge Indicator Indicator that the energy storage device is being charged

DESIGN


Full Wave Rectifier Testing with smoothing capacitor 10K ohms load 20uF smoothing cap

CAPACITOR TESTING


Supercapacitor Testing Schematic

BOOSTER TESTING

Direct measurement of voltage booster with 0.5V input

SYSTEM TESTING

Whole System Testing Schematic

HARDWARE & PARTS USED

Rectification: Schottky Diode- SMC Diode Solutions Voltage Boosting: EH4295 – Advanced Linear Device Inc.

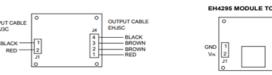
Energy Storage: Supercapacitor – Illinois Capacitor

Charge Indicator: LED

Tektronix 3021B function generator

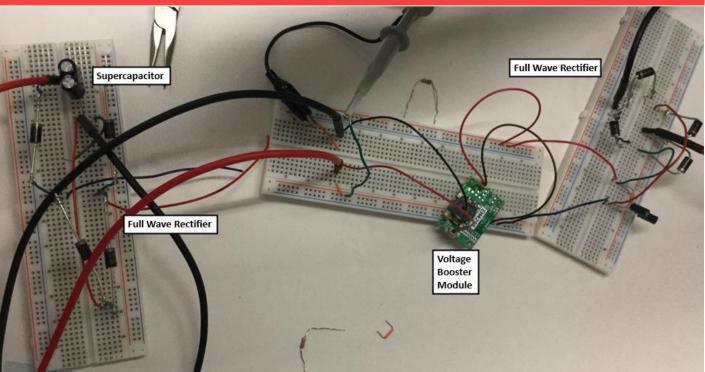
Agilent DSO-X-2024A digital oscilloscope

INTENDED USERS AND USES


- Photovoltaic Power Station
- \succ Power Plants
- \succ Factories
- \succ Wind Farm
- > Implantable Devices
- Remote Patient Monitoring

ACCOMPLISHED

Designed self contained, energy harvesting unit given


constraints listed above.

- Completed component level testing
- Investigated the inner workings of our booster module
- Explored alternative methods and parts

c	J1 pin 1: Ground, J1 pin 2: Positive Input Vin
	J4 pins 2/3: Standard AC Output
	J4 pins 1/4: DC Output when optional full wave rectifier

PROTOTYPE IMPLEMENTATION

FUTURE WORK

- Complete system integration testing
- > Detailed analysis of the performance of our system
- Find ways to improve the performance including: charge rate

and lowest possible voltage input

- > Strive for stretch goals
- > Design and fabricate a PCB

Full Wave Rectifier at the End before storin